
 1. What the course looks like pedagogically✅
From the document :

Key characteristics of your course

• Audience: Teenagers (14–18) with basic programming experience.

• Method: Strongly hands-on, learn-by-doing. The “Pedagogical Notes” (p.18) explicitly
state this.

• Structure: 15 sessions, each building a concrete Unity/VRChat feature.

• Progression:

• From setup → basic world → HUD → gameplay logic → networking → multiplayer
→ game loop → restart system → handling late joiners.

• Technological demands: High—Unity, VRChat SDK3, UdonSharp, networking logic, VR
interactions.

• Continuous testing & iteration: Every exercise requires testing in Unity Editor and
multiple VRChat instances.

• Final assessment: Students create and present their own multiplayer VRChat game.

Together these indicate:
 Active learning✔
 Situated, contextualised problem-solving✔
 Technology-dependent instruction✔
 Clear step-by-step performance tasks✔
 Incremental competencies leading to a final project✔

 2. Evaluating each instructional model ✅
against your course

 ADDIE (Analysis – Design – Development – 🔹
Implementation – Evaluation)
Strengths for your course

• Helps structure the entire course lifecycle.

• Good for complex technical content that must be planned in stages.

• Works well for project-based curricula.

Limitations for your use case

• ADDIE is too high-level for session-by-session classroom guidance.

• It does not focus specifically on technology integration nor classroom execution.

• The course is already created, so ADDIE’s main value (big design planning) is partially
done.

Fit: (medium)★★★☆☆
ADDIE is useful but not the most accurate match.

 ASSURE (Analyze Learners – State Objectives – Select 🔹
Media & Materials – Utilize Media – Require Learner
Participation – Evaluate & Revise)
Why it fits very well
ASSURE is built specifically for technology-mediated, hands-on, classroom instruction, which
matches your course perfectly.

Your course explicitly follows ASSURE-like patterns:

A – Analyze learners

Your document defines:

• Age range

• Prior knowledge (basic programming)

• VR/non-VR usage issues

• Multiplayer coordination needs
(See page 1 for target audience details.)

S – State objectives

Each session has:

• A clear goal

• A clear deliverable
Examples:

 “Goal: In this exercise we will create the basic layout…” (p.2)✔
 “Deliverable: A simple enclosed arena…” (p.2)✔

S – Select methods, media, materials

Your course requires:

• Unity Hub

• VRChat SDK

• VCC

• VR Testing instances
(See Step 3 of Session 1.)

This is pure ASSURE methodology.

U – Utilize media & technology

Students work directly with:

• Unity

• VR hardware

• VRChat client

• Networking

• Game testing tools

Technology is not a complement—it is the medium of learning.

R – Require learner participation

Every session includes:

• Construction tasks

• Debugging

• Multiplayer testing

• Rebuilding and retesting
(Strong participatory learning.)

E – Evaluate & revise

Students evaluate functionality every step:

• “Test in Unity Editor”

• “Test in multiple instances”

• “Fix behaviour…”
Also final assessment: functional multiplayer game (p.18).

Fit: (excellent)★★★★★
ASSURE matches your course almost perfectly.

 CD/CI (Content Development / Cognitive Instruction)🔹
This model is useful for:

• Cognitive sequencing

• Scaffolding conceptual knowledge

Your course, however, is:

• Highly practical

• Less theory-driven

• Centered on technical tasks, not cognitive conceptualisation

Fit: (low)★★☆☆☆
Some elements apply (progressive scaffolding), but not enough.

 ARCS (Attention – Relevance – Confidence – Satisfaction)🔹
ARCS is a motivation model, not a complete instructional design model.

Your course already implements motivational strategies:

• Attention: VR, hands-on, game building

• Relevance: Teenagers love VR/Unity/games

• Confidence: Clear step-by-step tasks with predictable results

• Satisfaction: Students build a full multiplayer game

But ARCS cannot structure the whole course by itself.

Fit: (medium)★★★☆☆
Great as a supplement but not as the primary model.

 3. Final conclusion✅

 ⭐ The best tecnopedagogical instructional model for your
Unity & VRChat programming course is: ASSURE.

Why ASSURE is the strongest match:

• Your course is fundamentally technology-based → ASSURE specializes in tech-enhanced
instruction.

• Each session already aligns with ASSURE steps (goals → media → participation →
evaluation).

• The learning process is active, iterative, and test-driven, a core expectation of ASSURE.

• Learners must work with VR devices, Unity Editor, VRChat instances → ASSURE
explicitly integrates media utilization.

• Ideal for practical, procedural skills with real-time testing and peer collaboration.

Secondary Support Models:

• ADDIE → Useful for your overall course planning (macro level).

• ARCS → Great to enhance motivation but not sufficient alone.

• CD/CI → Limited relevance for this practice-heavy course.

	✅ 1. What the course looks like pedagogically
	Key characteristics of your course

	✅ 2. Evaluating each instructional model against your course
	🔹 ADDIE (Analysis – Design – Development – Implementation – Evaluation)
	🔹 ASSURE (Analyze Learners – State Objectives – Select Media & Materials – Utilize Media – Require Learner Participation – Evaluate & Revise)
	A – Analyze learners
	S – State objectives
	S – Select methods, media, materials
	U – Utilize media & technology
	R – Require learner participation
	E – Evaluate & revise

	🔹 CD/CI (Content Development / Cognitive Instruction)
	🔹 ARCS (Attention – Relevance – Confidence – Satisfaction)

	✅ 3. Final conclusion
	⭐ The best tecnopedagogical instructional model for your Unity & VRChat programming course is: ASSURE.
	Why ASSURE is the strongest match:
	Secondary Support Models:

